Elementary maths for GMT

Calculus

Part 3.1: Multivariable calculus

Multivariable calculus

- Multivariable calculus is the branch of calculus that studies functions of more than one variable
- Multivariable generalizations of single-variable derivatives and integrals are partial derivatives and multiple integrals

Outline

1. Partial derivatives

2. Gradient
3. Directional derivative
4. Stationary points
5. Multiple integrals

Partial derivatives

Definition

The partial derivative $\frac{\partial f}{\partial x}$ of a function f to some variable x is defined as the derivative of f to x while keeping all other variables fixed, i.e. thought of as constants

- For example, take the following equation

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}{ }^{2}+\sin \left(x_{2}\right)+\cos \left(\ln \left(x_{3}\right)\right)
$$

- The partial derivative with respect to x_{1} is

$$
\frac{\partial}{\partial x_{1}} f\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1}
$$

Examples

- With the function $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}{ }^{2}$
- regarding $x_{1}: \frac{\partial}{\partial x_{1}} f\left(x_{1}, x_{2}\right)=x_{2}{ }^{2}$
$-\operatorname{regarding} x_{2}: \frac{\partial}{\partial x_{2}} f\left(x_{1}, x_{2}\right)=2 x_{1} x_{2}$

Examples

- With the function $f\left(x_{1}, x_{2}\right)=\cos \left(x_{1} \sin \left(x_{2}\right)\right)$
- regarding x_{1} :

$$
\frac{\partial}{\partial x_{1}} f\left(x_{1}, x_{2}\right)=-\sin \left(x_{1} \sin \left(x_{2}\right)\right) \sin \left(x_{2}\right)
$$

- regarding x_{2} :

$$
\frac{\partial}{\partial x_{2}} f\left(x_{1}, x_{2}\right)=-x_{1} \sin \left(x_{1} \sin \left(x_{2}\right)\right) \cos \left(x_{2}\right)
$$

Partial derivative shorthand

- Partial derivatives are often written in a more compact form using subscripts. For example:

$$
\begin{aligned}
& \frac{\partial}{\partial x} f(x, y, z)=f_{x} \\
& \frac{\partial}{\partial y} f(x, y, z)=f_{y}
\end{aligned}
$$

etc.

Gradient

Definition

The gradient ∇f of a function f is a vector containing all the partial derivatives of f :

$$
\nabla f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\begin{array}{c}
f_{x_{1}} \\
f_{x_{2}} \\
\vdots \\
f_{x_{n}}
\end{array}\right)
$$

Gradient operator

- The gradient operator ∇ is often called nabla or del. Instead of ∇f the notation $\operatorname{grad}(f)$ is also used
- The gradient operator can also be used 'alone' in formulas, where it stands for the vector of partial derivatives operator:

$$
\nabla=\left(\begin{array}{c}
\frac{\partial}{\partial x_{1}} \\
\frac{\partial}{\partial x_{2}} \\
\vdots \\
\frac{\partial}{\partial x_{n}}
\end{array}\right)
$$

Gradient example and use

- The gradient at each point of a function is a vector in the direction of the locally steepest ascent
- Example

$$
\begin{aligned}
& f\left(x_{1}, x_{2}\right)=x_{1}{ }^{2}+x_{2}{ }^{2} \\
& \nabla f\left(x_{1}, x_{2}\right)=\binom{2 x_{1}}{2 x_{2}}
\end{aligned}
$$

Directional derivative

Definition

Given a row vector \boldsymbol{u}, the directional derivative f_{u} of a function f in the direction of \boldsymbol{u} is defined as

$$
f_{u}=\frac{1}{\|\boldsymbol{u}\|}(\boldsymbol{u} \cdot \nabla f)
$$

- This derivative equals the 'normal' (single-valued) derivative of the function f if you crossect it in the direction u
- Intuitively represents the instantaneous rate of change of f moving through a point in the direction \boldsymbol{u}

Illustration

- For three variables, let denotes $f=f(x, y, z)$ and $\boldsymbol{u}=(u, v, w)$, the definition turns into:

$$
f_{u}=\frac{1}{\|\boldsymbol{u}\|}\left(u f_{x}+v f_{y}+w f_{z}\right)
$$

- An alternative notation for f_{u} is $\nabla_{u} f$

Examples

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \text { and } \boldsymbol{u}=\left(\frac{1}{2}, \frac{1}{2} \sqrt{3}, 0\right)
$$

- The directional derivative of f in the direction of \boldsymbol{u} at coordinates $(1,2,3)$ is

$$
\begin{aligned}
& \|u\|=\sqrt{\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2} \sqrt{3}\right)^{2}+0}=\sqrt{\frac{1}{4}+\frac{3}{4}}=1 \\
& f_{u}=\left(\frac{1}{2}, \frac{1}{2} \sqrt{3}, 0\right) \cdot\left(\begin{array}{l}
2 x_{1} \\
2 x_{2} \\
2 x_{3}
\end{array}\right)=\frac{1}{2} \cdot 2 x_{1}+\frac{1}{2} \sqrt{3} \cdot 2 x_{2}+0 \cdot 2 x_{3}=x_{1}+\sqrt{3} x_{2} \\
& f_{u}(1,2,3)=1+2 \sqrt{3}
\end{aligned}
$$

Stationary points

Definition

A stationary point of a function of multiple variables is a point where all the partial derivatives are zero.

- Therefore, to find a stationary point the following should be solved

$$
\left(\begin{array}{c}
\frac{\partial}{\partial x_{1}} f\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
\frac{\partial}{\partial x_{n}} f\left(x_{1}, \ldots, x_{n}\right)
\end{array}\right)=\left(\begin{array}{l}
0 \\
\vdots \\
0
\end{array}\right)
$$

Example

- Find the stationary point of the function

$$
f(x, y)=x^{2}+y^{2}
$$

Example

- Find the stationary point of the function

$$
f(x, y)=x^{2}+y^{2}
$$

$$
\begin{aligned}
\binom{f_{x}}{f_{y}} & =\binom{0}{0} \\
\binom{2 x}{2 y} & =\binom{0}{0} \\
\binom{x}{y} & =\binom{0}{0}
\end{aligned}
$$

- Thus the point $(0,0)$ is the stationary point of the function $f(x, y)$

Type of stationary point

- There are two types of stationary points - extrema (minima or maxima)
- saddle-points
- To determine the type, we need the Hessian of the function

Hessian

Definition

The Hessian H of a function $f\left(x_{1}, \ldots, x_{n}\right)$ is the matrix of all second-order partial derivatives of the function f

$$
H=\left(\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}{ }^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}{ }^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}{ }^{2}}
\end{array}\right)
$$

Using the Hessian

- To find the type of a stationary point
- The determinant $|H|$ of the Hessian of a function f evaluated in a stationary point p determines the type of stationary point
- If $|H|>0$ and $\frac{\partial^{2} f}{\partial x_{1}{ }^{2}}<0$ in stationary point p , then it is a maximum
- If $|H|>0$ and $\frac{\partial^{2} f}{\partial x_{1}{ }^{2}}>0$ in stationary point p , then it is a minimum
- If $|H|<0$ in stationary point p , then it is a saddle-point

Example

- Assuming the function $f(x, y)=6 x^{3}+2 x^{2}-2 y^{2}$
- Stationary points of f are $(0,0)$ and $\left(-\frac{4}{18}, 0\right)$, and

$$
|H|=\left|\begin{array}{cc}
36 x+4 & 0 \\
0 & -4
\end{array}\right|=-144 x-16
$$

- At stationary point $(0,0),|H|=-16$

Therefore $(0,0)$ is a saddle-point

- At stationary point $\left(-\frac{4}{18}, 0\right),|H|=16$, and $\frac{\partial^{2} f}{\partial x^{2}}=-4<0$ Therefore $\left(-\frac{4}{18}, 0\right)$ is a maximum

Example

Multiple integrals

Definition

A multivariable function can in general be integrated to any of its variables. An integration to more than one variable is called a multiple integral.

- Example

$$
\iint f(x, y) d y d x
$$

- This can often be computed by performing the integration from inside to outside:

$$
\iint(f(x, y)) d y d x=\int\left(\int(f(x, y)) d y\right) d x
$$

Meaning of multiple integrals

- In the same way that the definite integral of a function of a single variable corresponds to the area under the function, a 2D definite multiple integral corresponds to the volume under the function
- Single and multiple integrals are indispensible when computing areas and volumes of curved structures
- They pop up in just about any advanced physics and mathematics problems, including many modeling, simulation and rendering problems

Example

- Integrate the following function f over the domain $(0,2) \times(1,3): f(x, y)=x^{2}+2 x y+y^{2}$

$$
\begin{aligned}
\int_{0}^{2} \int_{1}^{3}\left(x^{2}+2 x y+y^{2}\right) d y d x & =\int_{0}^{2}\left[x^{2} y+x y^{2}+\frac{1}{3} y^{3}\right] \begin{array}{l}
y=3 \\
y=1
\end{array} d x \\
& =\int_{0}^{2}\left(3 x^{2}+9 x+9-\left(x^{2}+x+\frac{1}{3}\right)\right) d x \\
& =\int_{0}^{2} 2 x^{2}+8 x+\frac{26}{3} d x \\
& =\left[\frac{2}{3} x^{3}+4 x^{2}+\frac{26}{3} x\right]_{0}^{2} \\
& =\frac{16}{3}+16+\frac{52}{3}-(0+0+0)=\frac{116}{3}
\end{aligned}
$$

